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ABSTRACT to account for the viscous behavior of ice, the

INTRODUCTION

A finite element method of analysis is developed
and applied to the study of global and local pressures
generated on & cylindrical indenter during sea ice
deformations in the creeping mode. Numerical simula-
tions are performed under plane stress conditions to
assess the influence of interface adfreeze and fric-
tion, material constants for a multi-axial powver-law
creep model, indenter diameter, and ice sheet velocity
on predicted pressures. The results are compared
with those based on approximate methods of analysis,
Stress, strainrate and strain contours are obtained in
addition to the distribution of interface pressures,

Extraction of hydrocarbons from the Arctic off-
shore requires the design of drilling and production
platforms to withstand loading generated by perennial
ice features. Two levels of loading are typically
considered; Global ice forces goverﬂ the overall
structural geometry and dimensions as well as the
foundation design while local.pressures are likely to
dictate wall thicknesses and local framing, and may
well govern structural cost.

The interaction of an ice sheet with a vertically
faced (and usually rigid) indenter is an important '
loading condition for cylindrical structures and for
conical structures with grounded rubble pile or
accreted ice foot. In general, this indentation
phenomepon is characterized by the simultaneous
occurrence of viscous (rate-dependent) and fracture
behavior, V

’ s

Several theoretical models based on approximate
methods of analysis that idealize the ice sheet as a
continuun have been proposed for predicting global ice
forces. These include: (1) the upper and lower
bound, plasticity type solutions of Michel and
Toussaint®, Croasdale et al.*, and Ralstcns, (2) the
reference stress, power law creep solution of Ponter
et al.“. and (3) the upper bound, power law creep
solutions of Bruen, Vivatrat and Chen '6, and Ting and
Shyam Sunder’. The plasticity type models require
empirical definition of an average strain rate measure

Relerences and 1llusStrations at end of paper.

reference stress approach accounts for the effect of
variability in material donstants in an approximate
sense, and the upper bound, power law creep solutions
require accurate specification of ice sheet
kinematics. No equivalent theoretical models exist
for the case where either pure (linear elastic)
fracture or combined viscous and fracture effects
dominate.

Theoretical predictions of interface pressures F:
are not generally available. However, Ting and Shyam
Sunder’ have applied the (approximate) strain path
method of analysis, originally developed for deeg
penetration problems in soil mechanics by Baligh®,
to study interface pressures during plane strain
indentation. Their results for a power law creep
model of ice showed that normal interface pressures
may be 0.5-1 times the global pressure. They also
found that interface adfreeze and friction stresses
can significantly influence ice pressures.

The "continuum™ predictions of ice pressures may
in many cases be too high by.a factor of 2-10. Four
major factors cam explain this uncertainty: ° (i) )
incomplete modeling of the mechanical behavior of ice,
including temperature and fracture effects, (ii)
empiricism in the theoretical- models resulting from
the use of approximate analysis methods, (iii)
inadequate modeling of contact forces at the ice-
structure interface, and (iv) ignoring the effects
size on material strength. : '

of
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A study of ice indentation in the creeping mode
is important for two reasons: (a) creep is the pre-
dominant mode of deformation for artificial islands in
the Arctic nearshore region during "breakout" and/or
steady indentation conditions occurring in the winter,
‘and (b) stresses, strains, and strainrates within the
continuum resulting from creep are necessary to pre-
dict the initiation and possibly even the propagation
of cracks when .viscous effects influence fracture
behavior. 1In a recent paper, Shyam Sunder and Ting
have shown that a limiting tensile strain criterion
dependent on the instantaneous strainrate can explain
crack initiation in ice. Furthermore, for load
transmitting systems such as ice features (as opposed

to load bearing structural systems) the use of this
criterion for fracture propacation is likely to be
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consexrvative when compared to a classical fracture
mechanics approach. This is because the latter
considers only the propagation of Ete—existina cracks
with a given distribution of sizes, while the former
may be used to predict both the initiation and
propagation of cracks in a material originally in
virgin (flawless) form.

This paper is concerned with the development and
application of a finite element method of analysis for
studying global and local pressures generated on a
rigid, cylindrical indenter during sea ice deforma-
tions in the creeping mode. Numerical simulations are
performed under plane stress conditions to assess the
influence of interface adfreeze and friction, material
constants for a2 multi-axial power law creep model,
indenter diameter, and ice sheet velocity on predicted
pressures. The results are compared with those based
on approximate methods of analysis. Stress, strain-
rate, and strain contours are obtained in addition to
the distribution of interface pressures.

FINITE ELEMENT FORMULATION

Governing Eguations.-~ For general viscoplastic
behavior, which includes creep, it is convenient to
work with time derivatives of the governing equations
for a solid. The weighted equilibrium-rate equation
which forms the basis for the finite element displace-
ment meéthod is then given by:

f BT oav=p N (1)
where B is the strainrate - nodal velocity transfor-

mation matrix derived from the chosen displacement
expansion for the finite element, i.e.,

(2)

-

.EzB

The strainrate vector consists of two components,
one due to elastic strains, characterized by the com-
pliance matrix € and its inverse the rigidity matrix
ID, and the other due to inelastic (irrecoverable)
strains. : :

E-ciky . , BNED

where I refers to the inelastic strains. For linearly
elastic behavior, the compliance and rigidity matrices
do not vary in time. The inelastic component may con-
sist of rate-independent plastic strains, permanent
creep (nonlinear viscoelastic) strains, and/or visco-
plastic strains. 1In general, this may be expressed
as: -

Er = £9,9,5,m) (4)
where T allows for temperature dependence;

Combining Egs. {(1)=(3) and defining X as the
elastic stiffness matrix of the element leads to the

element equilibrium eguation:

Ki=f+[87p i av (5)

|

and the element stressrate - nodal velocity relations:

-

- D& (6)
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The global stiffness matrix, Kg, is obtained from Eq.
(5) using conventional procedures.

Material Modeling.-- In this paper, sea ice is
treated as a linearly elastic plus creepihg material.
Thus,’5 is the element stiffness matrix usually
employed in linear élastic analyses. Under uniaxial
(compressive) loading'conditions, creep in ice is
generally expressed in terms of a power law' ~, i.e.,

€. = a oN (M
where a and N are constants with the temperature
dependence being included in the parameter a following
an Arrhenius activation energy law.

The multi-axial ??neralization of the creep law
as proposed by Palmer is based on assuming incom-
pressibility, which is valid for ice as long as the
hydrostatic stress is not too high such as under plane
stress conditions. It suffices then to relate the
creep strainrate tensor to the deviatoric stress
tensor. This is accomplished by assuming that the two
tensors are directly proportional to one another as
given by the associative flow rule:

where A is a scalar parameter and S is a vector
containing the deviatoric stresses. For a von Mises
(isotropic) yielding surface, X is the ratio of the
octahedral shear strainrate to the octahedral shear
stress. For the uniaxial power law given in Eq. (7),
it follows that:

A= 3/2 a oeN-1 : {9)
with the effective stress measure O, defined as:

O = (3/2 sijsij)1/2 (10)

* Given the stress vector, the deviatoric stresses
may be.obtained by subtracting the hydrostatic stress,
i.e., 5=GO in matrix form. Then applying Egs. (10),
(9), and (8) in succession leads to the creep
strainrate vector. '

Solution Algorithm.~-- An iterative solution
algorithm is developed to solve a pseudo-force form of
the nonlinear governing equations given in Egs. (5)
and (6). Although the algorithm has been applied to
the specific material model presented above, it can be
easily generalized to account for material anisotropy
and for cracking based on the limiting tensile strain
criterion. For purposes of discussion, attention is
focussed at the element rather than the global level.
At first the governing equations are‘intégtated in
time between tj; and tj;q to yield:

K(U541-01)=Bie1-Bs+ [ BD(E su9-8c ) v (1)

B541=95 = D B(Ui41-Us)-DlEe,i41-5c, i) (12)

Creep strains which appear in both the equations
are nonlinear functions of stress since X in Eq. (8)
is not a constant. A two-level interative algorithm
is used to solve these equations for each new time
step tj4+1. The key steps in the solution algorithm
are as follows:

1. Compute the displacement increments from (the
global form of) Eg. (11) for the given load-
ing veéctor. 1In the first iteration on the
equation, the incremental creep strains are
assumed to be zero.
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2. Compute the incremental stresses and incre-
mental creep strains from Eq. (12) for the
displacement increments obtained in step 1
using the iterative algorithm (lower-level
iteration in k) discussed below. In the
first iteration on this equation assume the
incremental creep strains to be zero.

3. Return to step 1 and iterate on -Eg. (11}
(higher-level iteration in j) using the
incremental creep strains obtained in step 2
until convergence is achieved. Two cover-
gence criteria are used: (a) ratio of norm
of displacement increment vector to norm of
displacement vector at given time step is
less~than-or-equal=to 0.001; and (b) absolute
value of energy norm is less-than-or-equal-to
0.001, i.e.,

lApj.Agjl
| "o o < 0.001 (13)
| 272

where 8p refers to the entire right hand side
of Eq. Ti11). The evaluation of the integral
defining the inelastic load vector is based
on a Gaussian quadrature formula (for a four-
noded quadrilateral element, four integration
points are used). Typically, 4-6 iterations
are required for convergence at the higher-
level.

The evaluation of the incremental stresses and
incremental creep strains in step 2 requires the
simultaneous consideration of Egs. (12) and (8). 1In
addition to a nonlinear egquation solver, a numerical
time integrator is needed to obtain results. Previous
investigatoers ’ have used a simple successive
substitution type algorithm to decouple the two
equations. This involves the use of incremental creep
strains from iteration k to evaluate the incremental
stresses for iteration k+1 using Eq. {12). The
incremental creep strains for iteration k+1 are then
evaluated with the C-method of numerical time
integration which expresses Eqg. (8) as:

(Ec,i41 = Ec,1) = Xa Sa (tie1 = t3) (14)
where Sc is a weighted average of the deviatoric
stress vector in the time interval (tjsy - tj) and Aq
is derived from a similar weighting on the ‘effective
stress, i.e.,

Sa = (1-8) S; + @ S;j.4 ' (15)

Typical values of @ lie in the range 0-1. A
value of @ equal to zero yields the forward (explicit)
Euler method, while ¢ egual to one yields:the backward
(implicit) Euler method. Both these formulas are
first-order accurate (for linear problems in which A
is a constant, and not dependent on the effective
stress), although the actual error of the_.backward
formula is considerably less than that of the forward
formula assuming that the former is iterated up to
convergence. A value of @ equal to 0.5 yields the
well-known trapezoidal rule, also called the improved
Euler's method since it is second-order accurate. A
linear stability analysis of the G-method shows that
it is unconditionally stable only for ©30.5.

For quasi-elastic problems in which creep defor-

mations are not dominant, experience has shown that
for small time increments G=0_.5 is more accurate, and
that for large time increments G=1 is to be preferred
However for creep dominant problems of concern here,
the convergence rate slows down considerably for
highly stressed elements when Q=1 is used, and more
than 10-12 iterations may be needed for convergence at
the lower-level. This is computationally unattractive
since iteration is necessary at each integration point
within an element (four in the case of a quadrilateral
element) and highly stressed elements may occur often
in a large finite element grid, e.g., consisting 250
elements. :

Convergence is accelerated here by developing a
lower-level algorithm that combines a Newton-Raphson
or tangent type iteration with the CG-method. The
resulting equations are listed below:

dae  k
[I + 23____0—‘: ] —i:: - 0 4 D[BAU - Ack]
—i
aAﬁc k x
* 3[’5_] —i+1 t16)
—i+1

where Afck is obtained by applying Eq. (14) after
obtaining the stress quantities at iteration k, and
similiarly: ’

s X

—c 3 -1 3) Tk
el =ttalir+ 367 -ssloe am
—i+1 ) e
For the given material model, 3A/30, can be obtained

from Eq. (9). Notice that the algorithm becomes
explicit for @=0 as it should and no iteration is
required. Convergence is defined to occur when the
maximum absolute value of the relative change in point
stresses between iteration k and k+1 is less-than-or-
equal-to 0.001. TIteration is also stopped if the
actual point stresses are zero at k and their maximum
absolute value is less-than-or-equal-to 0.001 at k+1.
Application of this iterative scheme with G=1 shows
that convergence is typically obtained in 4 iterations
instead of more than 10-12, thereby cutting down the
computational effort by approximately 50% if the
increased computational effort per iteration is
accounted for.

Computer Implementation.-- The finite element
analysis algorif{phm has been implemented in a computer
code called DECNEC (Discrete Element Computational
NEtwork Controller). Data input is simplified by the
use of a pre-processor specially written for the pro-
gram. A post-processcr called ORION, originally
developed at the Lawrence Livermore Laboratory, can
produce graphical display of stress, strain, and
strainrate contours as well as interface pressure
distributions.

The current implementation is a two-dimensional
version for plane stress problems, while the develop-
ment of a plane strain version is underway. A four-
noded quadrilateral element is currently available.
Although an eight-noded quadratic element is often
preferred (and will be included in the future), accu-
rate results can and have been obtained with the four-
noded element using a finer finite element mesh. The
program has the ability to simulate a free or fric-
tional contact between two deformable bodies, i.e., no

contact stresses due to adfreeze bond, by defining the!
interface a2s a "slideline". :
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Code Verification.-- The accuracy of the com-
puter code has been verified in two ways; through the
solution of simple test problems, and by comparing
(see subsequent section) the variability in predicted
global pressures due to indenter diametexr, material
nmodel parameters, and ice sheet velocity with that
predicted by approximate methods of analysis. 1In both
cases, the numerical solutions are accurate to within
specified tolerances typically achievable in finite
element analyses.

One of the test problems, for example, considers
a two-dimensional rectangular element subjected to a
uniform compressive stress (U, = -0) normal to one of
its sides and with normal movement constrained on the
other three sides (Fig. 1). A simple analysis shows
that for the given material model, the lateral stress
(Uy) is given by:

9, = =0,/2 [(1-2v)e-2/3Ert _ 4] (18)
where V is the Poisson's ratio and E is the Young's
modulus. This solution is valid for a constant value
of X, which in an average sense may be defined as its
value at steady state. Under steady state conditions,
i.e., large t, Eg. (18) shows that the lateral stress
is compressive and equal to half the z-stress. Fur-
thermore, the z-strainrate is the creep strainrate and
equals ~1/2 A0 while the lateral strainrate is zero as
it should be for the given boundary conditions.
Application of DECNEC using two finite elements veri-
fied this analysis.

NUMERICAL SIMULATIONS

-and Wang'

Description of Case Studies.-- Numerical simula-
tions are performed for the seven cases identified in
Table 1.. The objectives of the first three simula-
tions are to quantify the effect of interface adfreeze
and friction on predicted indentation pressures; The

fixed condition provides an upper bound solution since

the ice-structure interface is considered to be
infinitely strong. The free condition corresponds to
no adfreeze bond and interface friction, while the
roller condition provides an intermediate solution.
The next two simulations study the influence of ice
sheet velocity on pressures. The chosen base velocity
of 0.195 m/hr corresponds to the recorded maximum
average velocity over a twelve-hour period just prior
to "breakout" (macrocracking) for an artificial isiand
in the Beaufort Sea. The sixth simulation attempts to
gquantify the effect &F a grounded rubble pile or an
accreted ice foot on ice pressures by defining a
larger effective indenter diameter (2.85 times the
structural diameter). The final simulation studies
the effect of variability in constants defining the
material model on ice pressures. Two sets of para-
meters fYE sea ice based on the work of Sanderson
respectively, are considered:. N=3,
a=2.125x10"6 (Mpa)-35-1; and N=4, a=1.848x10~6 (Mpa)-
45=1. The elastic constants, which have negligible
influence on the steady state solutions, are taken to
be E=9.5 GPa and V=0.3, :

Numerical Implementation.-- Prior to carrying.
out the above studies, it is necessary to set up the
finite element mesh, specify a time increment for the
analysis, and define the excitation.

The finite element mesh is defined such that (i)
the aspect ratio of each element is as close to one as

possible, (ii) the scatter in stresses predicted by
adjacent elements at their commmon boundarv is less

" the conflicting requirements of accuracy and computa-

than 10%, and (iii) the boundary of the ice sheet is a
circle whose extent ig sufficient to simulate’ the R
infinite medium. The first criterion is maintained by
the pre-processor whlch makes the radial length of
each element equal to its arc length nearer the inden-
ter. The second criterion is controlled by specifying
the number of radial segments into which a quarter-
plane may be divided. A value of nine is considered
here (for an eight-noded element five or six may
suffice). The last criterion is also implemented by
the pre-processor which makes the radius of the cir-
cular boundary equal to 9.5 times the indenter radius.
Accounting for symmetry about the z-axis, the above
discretization leads to a finite element mesh with 252
elements and 285 nodal points (Fig. 2). The number of
degrees-of-£freedom is 476 for the fixed condition, 538
for the roller condition, and 540 for the free condie-
tion.

The choice of time increment is made to satisfy

tional effort. Accuracy, in turn, is achieved by
allowing sufficient time for the solution to reach
steady state and by specifying a time increment that
captures the variability in response prior to reaching
steady state. Experience with the simulations has
shown that it is appropriate to consider a2 time incre-
ment which makes the exponent in Eq. (18) equal to 40
in 20 time steps. For typical values of A and E, the
time increment is approximately 100 s.

The chosen uniform far-field velocity listed in
Table 1 defines the excitation here, although other
types of excitation such as environmental traction on
the ice sheet can be handled equally well. For a
given. time step, the excitation is defined in terms of
an imposed displacement in the z-direction at the
far-field boundary nodes. This displacement value is
made to increase linearly in time, consistent with the
chosen uniform velocity. :

DISCUSSION OF RESULTS

global pressures by almost a half.

. Global Forces.-- Table 2 lists the global
pressures predicted by the finite element analysis for
the seven cases of interest. Pressure values are the
global forces divided by the indenter diameter D, and
ice sheet thickness t. . ’

Comparing the first three values of global
pressure it is seen that the fixed condition does
provide an upper bound solution. The global pressure
for the fixed case is about 28% higher than that for
the roller case. 1In turn, the global pressure for the
roller case is 1.93 or almost twice that for the free
case. This spread in global pressures is indicative
of the influence of interface friction and adfreeze
bond. The hundred percent reduction in pressure
between the roller and free case can be explained by
examining the stresses within the ice sheet. For the
roller case, the upstream and downstream stresses are
equal in magnitude and their resultants act together
in the z-direction. In the free case, the downstream
stresses are almost zero since the lack of contact at
the interface on this side tends to eliminate any
influence of the indenter on the ice sheet. As a
result, the downstream part of the ice sheet acts
predominantly like a rigid bedy. This tends to reduce

The fourth and f£ifth values of global pressure
indicate that reducing the ice sheet velocity by a

B

factor of 6.4 leade to a 46% reductimm in Brecsures
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while increasing the velocity by a-factor of 1.6 leads
to a 17% increase in pressures. Thus even a factor of
two uncertainty in velocity will affect the pressures
only by about 20-30%.

Cases 2 and 6 provide some idea of the effect of
a grounded rubble pile or an accreted ice foot. By
defining an effective indenter diameter equal to 2.85
times the structural diameter, the global pressure has
reduced by 31%. However, the global force has
actually increased by 97% from 211 MN/(unit ice thick-
ness) for case 2. Two extreme scenarios can be con-
sidered to estimate the global force felt by the

|structure when there is a grounded rubble pile: (i)
the entire global force is transmitted to the struc-

ture which in turn transmits it to the foundation, and
(ii) both the structure and the grounded rubble pile
resist the global force, each transmitting to the
foundation a force proportional to its contact area
with the foundation. Under the first scenario, which
is probably overconservative, the global force on the
structure is 414 MN/(unit ice thickness) an increase
of 97% from case 2, Under the second scenario, which
may be reasonable only i{f the rubble pile is consoli-
dated and grounded firmly in the foundation soil such
as in the case of constructed ice packs, the global
force on the structure is 51 MN/(unit ice thickness) a
reduction of 76% from case 2. Further research is
necessary to quantify the level of force that can be
directly transmitted to the foundation by a grounded
rubble plle.

The last case shows that the two sets of material
constants considered in this paper lead to ice pres-
sures which differ by about 19%. Combining this
information with earlier experience indicates that
uncertainties in material constants for an isotropic
power law creep model may yield ice pressures that
vary by about 15-30%. However, improved material
models that include fracture and temperature effects
in addition to the transversely isotropic behavior of
sheet ice can have a major influence on ice pressure
predictions. :

Calibration with Approximate Solutions.-- The
global pressures for cases 4 through 7 indicate the
influence of -ice sheet velocity V, indenter diameter
D, and material constants a and N on the results. 1In
order to provide perspective and calibration with so-
lutions based on approximate methods of analvsis, the
upper bound solution of Ting and Shyam Sunder’ corres-
ponding to a two-dimensional velocity field obtained
by superposing a uniform fiow and a doublet, is con-
sidered. The resulting kinematic model resembles the
flow of an-'infinite ice sheet past a circular indenter
with the interface matching most the roller condition.
According to the solution, the global pressure is pro-
portional to (V/D)1/N If this variation .is valig,
the ratio of global pressures in cases 4 through 6 to
case 2 should be 0.54, 1.16 and O. 70, respectively.
The finite element analysis predicts the ratios to be
0.54, 1.17 and 0.69. For the two sets of material
constants in cases 7 and 2, the approximate solution
predicts a ratio of 1.17 while the finite element
analysis predicts a ratio of 1.19.. .In all cases, the
effect of changes in V, D, a and N on the finite
element solutions is almost identical to that predic-
ted by the upper bound, creep law solution.

"In order to compare the actual (as opposed to
ratios of) global pressures, it is necessary to

recognize that the two-dimensional nature of the
chosen kinematic field makes the approximate analvsis

strictly correspond to a plane strain condition and
not a plane stress condition. Ponter et al.'s"
analysis for both plane strain and plane stress based
on the reference stfess method can be used to derive a
correction factor by which to divide the approximate
solution for applying it under plane stress condi-
tions. For the material model with N=3 the correction
factor is 1.8 and for the N=4 model it is 1.96. The
approximate formula corrected by a rounded factor of 2
is given below:

/N
412y (19)

vhere the quantity in brackets raised to the power of
1/N may be interpreted as the uniaxial strength of ice
evaluated at an average effective strainrate of 8/f§
V/D using Eq. (7). Table 2 shows that the predictions
based on Eq. (19) differ from the finite element solu-
tions by less than 10%. The fixed condition is ob-
tained by multiplying the above equation by 1.3, while
the free condition uses a multiplying factor of 0.5
(Table 3). Note that (i) the uncorrected upper bound
solutions are overconservative by almost hundred per-
cent or more, and (ii) the approximate solutions need
no longer be upper bounds once the correction factor
is applied. :

Local Pressures.-~ The maximum (peak) interface
normal stress for each of the seven simulations is
listed in Table 2. The table also lists a maximum
interface shear stress of 0.73 MPa for the fixed
condition. There are no interface shear stresses for
the roller and free conditions. Notice that in all
cases the maximum normal pressure is approximately
0.35-1.10 times the global pressure, and not several
(e.g., three) times the global pressure.

The maximum normal stress for the fixed condition
is lower than that for the roller condition by 17%,
although a reverse trend is observed for global
pressures. This occurs because part of the force in
the fixed condition is carried by interface shear
stress. On the other hand, the maximum normal stress
for the free condition is about 4% higher than that
for the roller condition. There are no interface
stresses on the downstream side for the free condition
due to lack of coritact between the ice sheet and the
indenter. The small level of stresses that exist in
the predominantly rigid continuum on the downstream
side are transmitted to the structure from the up-
stream side, thereby increasing the normal stresses on
that side by the 4% mentioned above.

Comparison of the local and global pressures
shows that the ratio of the maximum normal interface
stress to - the global pressure is approximately 0.35
for the fixed condition, 0.55 for the roller condi-
tion, and 1.10 for the free condition. Furthermore,
the variation of local pressures with V, D, a and N .is
similar to that for global pressures. Thus multipli-
cation of Eg. (19) by 0.46, 0.55, and 0.55 can be used
to estimate the respective maximum normal pressures
(Table 3). 1In a similar fashion, the maximum inter-
face shear stress for the fixed condition nmay be
estimated from the eguation with a multiplication
factor of 0.37.

For purposes of design it is necessary to con-
sider not only the maximum values of normal stress but
also its distribution on the structure. The design of
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‘reported in the literature’’:

based on
the
contact

individual structural components is typically
a tributary loaded area. It is possible that
average integrated stress on this area due to
with the ice sheet is significantly less than the
point maxima of stress. Further, the average stress
may reduce for structural components which have larger
tributary areas. Figures 3 and 4 present the normal
stress distributions on the interface. Note that the
normal stresses are always zero where the indenter is
tangential to the direction of ice sheet movement
(i{.e., angle equal to zero degrees). At the end of
the first time step where the solution is predomin-
antly elastic, the distributions are cosinusoidal as
one may expect. However as steady state is reached,
there is a tendency for the distributions to become
rectangular or uniform. The distribution is more
rectangular for the free and roller conditions than
for the fixed condition which appears to be predomin-
antly consinusoidal due to lower stress levels, as
well as for the N=4 case than for the N=3 case since
an increasing value of N makes the ice behave more
like a rigid-plastic material. The figures also show
that downstream interface stresses are zero for the
free condition. The distributions are not affected,
at least visually, as V and D are varied, although
they have to be scaled according to the maximum normal
stresses in Table 2. A conservative design approach
may be to assume & uniform distribution of stresses
based on the maximum normal interface stress.

) A careful consideration of the interface stress
levels sheds some light on which of the three condi-
tions, fixed, roller or free, is realistic. Figure 5
shows the distribution of interface shear stresses for
the fixed condition. At steady state, the distribu-
tion is predominantly sinusoidal with the maximum
value of 0.73 MPa occurring at the tangent point.
shear strength of adfreeze bond and sea ice as
varies over a wide
range 0.02-1.38 MPa. It is very likely that either
the adfreeze bond will give way or the ice will frac-
ture in shear over a significant fraction of the in-
denter perimeter. In addition, for the typical range
of effective strainrates close to the.downstream tip
of the indenter, the tensile strength of ice is less
than the downstream normal interface stresses for the
fixed and roller conditions, both of which are ten-
sile. Once again, if the adfreeze bond does not give
way, a tensile fracture may occur in the ice over the
perimeter close to the interface .on the downstream
side. Thus, for local pressures the use of the free
condition should be preferred. The choice will be
conservative over the fixed condition and, marginally
so, over the roller condition. However, the free
condition may be unconservative for global pressures
if the indentation problem is one in which the struc-
ture is surrounded by an infinite ice sheet and it is
possible for frictional stresses or adfreeze bond to
develop at the interface. )

The

Comparison with Pressure-Area Curves.~-- Pressure-
area curves are often constructed to help designers
obtain the average pressures over tributary locaded
areas for structural components ®, A typical curve
developed by Sanderson? is shown in Fig. 6. The
darkly shaded areas on the figure correspond to actual
measurements of ice pressure under widely varying
conditions, while the lightly shaded areas represent
the author's extrapolation of the measurements. The
dark regions in the extreme left are from laboratory
indentation tests such as those of Frederking and
Gold™", and Michel and Toussaint The central region

‘island with a contact area of 200 m2, the indentation

' The distribution of the interface stresses may be

‘opposed to contact over half the perimeter in the free

‘cracking, which leads to an excellent match between

reflects measurements from ice breakers traveling in

the Arctic, while the two smaller regions on the righ
correspond to global forces on artificial islands
estimated from pressute sensor measurements }n the “ic
sheet. The contact area is defined as the indenter
area of contact for the laboratory and artificial
island data. For the ice breaker data, the contact
area is the local area over which the pressure
measurement is made and not the form area of the ice
breaker. This figure shows that for an artificial

pressure may be around 1 MPa. However for a local
area of 10 m? on the same structure, the indentation
pressure may be around 3 MpPa.

The local to Qlobal pressure ratio of three
obtained from the pressure-area curve seems to contra-
dict the findings in the previous subsection. Fortun-
ately, this is not so. If the contact area in Fig. 6
is interpreted as Dt, then a smaller contact area
implies a smaller indenter diameter if the ice thick-
ness remains unchanged. The effect of indenter
diameter is well modelled by Eq. (19). A plot of the
maximum normal interface pressure estimate from the
equation leads to the solid line in the figure. Eq.
(19) is appropriately modified to account for transi-
tion from plane stress to plane strain using Ponter et
2l.'s reference stress method’ . This affects the
curve, in an insignificant manner, over the region 1-
10 m2. When the effective strainrate, i.e., 8//5 v/D,
exceeds 5x10~4 5’1, ice is assumed to have fractured
(cxrushed) and the uniaxial strength is capped, leading|
to the flat portion of the curve on the extreme left.
The predicted behavior provides an excellent match to
Fig. 6. Thus, a more appealing interpretation of the
figure is to consider the contact area as the indenter;
area (Dt in our case) and not the tributary loaded
area for a structural component, and the indenter
pressure corresponding to a given contact area as the
maximum normal interface pressure for that indenter.

assumed uniform over the indenter area of contact as
concluded earlier. However, a different boundary
value problem involving a smaller contact area, as

condition, will lead to higher interface pressures.

The key assumption in generating the analytical
curve in Fig. 6 concerns the choice of V. The value
of 0.195 m/hr considered here is based on data for an
artificial island just prior to "breakout" or macro-

predicted and measured indentation pressures for ¢he
structure. However, significantly higher velocities
do occur in the field for which ‘the current predictive
models based purely on an isotropic creep law will
lead to increasing pressures. Fracture in ice will be
the key mechanism that limits pressures generated
under higher velocities.

Multiaxial Behavior of Ice Sheet.-- A study of
the multiaxial behavior of an ice sheet during inden-
tation in the creeping mode provides clues to likely
failure modes, particularly fracture. All forms of
fracture (crushing, spalling, splitting) initiate as a
result of tensile strains perpendicular to the crack
direction. Even if the applied loads at the element
level are not tensile, it is possible for tensile con-
ditions to occur in a rotated frame of reference,
e.g., a 45° rotation in the case of pure shear.

Table 4 lists the principal stresses at the peoint

of maximum interface pressure at two time instante:
at the and of the first time sten (around 100 s) where
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the solution is predominantly elastic, and at the
twentieth time step (around 2000 s or 30 minutes)
where the solution has reached steady state and is
predominantly creep. The biaxial stress state at the
first time step is compression-tension for all the
cases except for a2 fixed condition where it is
compression-compression. As creep starts to dominate,
all the cases tend to compression-compression.

Figures 7 and 8 shows how this compression-compression
region grows in time for the fixed and free cases.

The region is much larger for the fixed condition than
for the free condition. The roller condition is some-
where in between although it resembles more the free
condition. The most striking observation that can be
made from these figures is that tensile stresses occur
almost all over the ice ‘sheet., Biaxial tension tends
to occur on the downstream side, while compression-
tension states of stress are present on both sides.
Experimental evidence under compression-tension states
of stress shows that the occurrence of even small
tensile stresses weakens ice considerably, leading to
premature fracture when compared with uniaxial tensile
loading.

Figure 9 shows the strain fields, which are more
relevant to explaining fracture initiation. Since the
algebraically maximum principal strains are positive
{or almost so) over the entire ice sheet for the fixed
and roller conditions at steady state, there is no
compression-compression {and by symmetry no tension-
tension) region of strain., A tension-compression
state of strain dominates the ice sheet, with tensile
strains exceeding 0.001 at steady state. As the
tensile failure strain is about 0.001 or less for
strainrates greater than 10=7 s~! under Just uniaxial
loading, it seems likely that cracking will occur even
before steady state creep is reached. Similar
conclusions apply for the free condition, the only
difference being that downstream strains are
negligible. :

The maximum effective strainrates for the seven
simulations are listed in Table 2. For the kinematic
model considered by Ting and Shyam Sunder’ which
is closest to the roller condition, .the maximum
effective strainrate equals 8//3 V/D. The prediction
of 2.3x10"6 s=! for case 2 cémpares well with the
finite element analysis value of 3.4x10-6 s-1,
Further, cases 4 through & are consistent with the
predicted proportionality to V/D. Contours of
effective strainrate are plotted in Fig. 10. The.
strainrates tend to zero at the tangent points for the

maximum close to but not at the tips. On fhg other
hand, the tangent point has the maximum value for the
fixed condition. In the,K immediate vicinity of the
indenter, these plots are different from the circular
contours predicted by the kinematic model in the
approximate analysis, This finding reinforces Ting
and Shyam Sunder's’ observation that the

approximate upper bound analysis is quite accurate for
global pressures, although the use of the strain path
method with a kinematic model that does not. capture
interface conditions may be inadequate for local
pressure predictions.

CONCLUSIONS

This paper has presented a finite element method
of analysis for studying the problem of sea ice
indentation in the creeping mode of deformation. The

lanalysis strategy, applicable to general viscoplastic
behavier including creep (nonlinear viscoelasticitv),

roller and free conditions as one may expect and is a®

is based on a secant type iteration involving 4-6
cycles per time step on the global equations of motion
and a Newtoh-Raphsonloq tangent type iteration,
combined with the G-method of time integration and
typically not exceeding 4 cycles per time step, on the
rate-dependent constitutive relations at each integra-
tion point within an element. The resulting computer
code, called DECNEC, is capable of simulating a free
or frictional contact between two deformable bodies,
i.e., no contact stresses due to adfreeze bond, by
defining the interface as a "slideline".

) Numerical simulations of ice-structure interac-
tion for a rigid cylindrical indenter under plane
stress conditions, a problem of general interest for
structural concepts in the Arctic, and an isotropic
(von Mises) multi-axial power law creep model for sea
ice showed that:

1. Global forces vary by a factor of 2.5 depend-
ing upon whether the interface condition is
fixed (infinite adfreeze bond strength),
roller, or free (no adfreeze bond strength or
interface friction). The fixed condition is
about 1.3 times and the free condition about
0.5 times the roller condition.

2. Finite element analysis predictions of global
pressure differ from a (approximate) modified
upper bound solution of Ting and Shyam
Sunder7 by less than 10% for varying
velocity, indenter diameter, and material
constants. :

3. The ratio of maximum normal interface pres-
" sure to global pressure approximafely varies
in the range 0.35~1.10 depending upon the
interface condition. It is 0.35 for the
fixed condition, 0.55 for the roller condi-
tion, and 1.10 for the free condition.

4. The maximum (peak) normal interface pressures
vary by a factor of 1.26 depending upon’ the
interface condition. The fixed condition is
about 0.83 times and the free condition about
1.04 times the roller condition., The maximum
interface shear stress for the fixed condi-
tion is about 0.81 times the corresponding
maximum normal pressure, However, a differ-
ent boundary value problem involving a small-
er contact area, as opposed to contact over
half the perimeter in the free condition,
will lead to higher interface pressures.

5. Pressure-area curves should be considered as

providing the maximum normal interface
pressure for a given indenter area of contact
(form area), rather than the avérage
integrated normal pressure over a tributary
loaded area for a structural component. It
is conservative to assume a uniform or
rectangular distribution of the local
pressure over the indenter area of contact
for purposes of design.

6. Tensile stresses, strains and strainrates
occur almost all over the ice sheet, and may
be the key to explaining fracture behavior
during indentation. While biaxial compres-
sion and tension states tend to occur for
stress on the upstream and downstream sides,

respectively, the state of strain is almost
alwavs compression-tension. The levels of
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TABLE 1 - SUMMARY OF CASES
Case Velocity ] Diameter N Interface
{(ft/hr) (ft) Condition

1 0.64 350 3 ‘Fixed

2 0.64 350 3 Roller

3 0.64 350 3 Free

4 0.10 350 3 Roller

5 1.00 350 3 Roller

6 0.64 1000 3 Roller

7 0.64 350 4 Roller

Note: 1 ft = 00,3048 nm
TABLE 2 - SUMMARY OF RESULTS
P/Dt (MPa)

Finite Maximum Interface Maximum Effective
Case Element Modified Normal Stress Strainrate

Analysis| Upper Bound (MPa) (s=1)
1 2.54 2.44 0.90 4.0x10-6
2 1.98 1.87 1.08 3.4x10-6
3 1.02 0.94 1.13 4.0x10-6
4 1.07 1.01 0.59 5.5x10~7
5 2.31 2.18 1.28 5.5x10~6
6 1.36 1.32 0.76 1.1x10-6
7 2.34 2.20 1.27 4.5%10-6

Note: Maximum Interface Shear Stress for Fixed Condition is 0.732 Mpa
1 MPa = 145 psi

TABLE 3 - MULTIPLYING FACTORS FOR APPROXIMATE MODEL (Eq. 19)

Condition Global Pressure Maximum Interface
Normal Stress

Roller 1.0 0.55

Fixed 1.3 0.46

Free 0.5 0.55

Fixed Condition = 0.37

Note: Factor for Maximum Interface Shear Stress in

G

TABLE 4 - PRINCIPAL STRESSES AT UPSTREAM TIP OF INDENTER

Elastic (Time Step 1) Steady State Creep (Time Step 20)
Case ) ]
O, (MPa) UY {MPa) ¢, (MPa) Cy(MPa)
1 -0.19 -0.07 ~0.90 -0.39
2 ~0.30 +0.07 -1.08 -0.16
3 ~0.36 +0.10 -1.13 -0.16
4 -0.18 +0.04 ~0.5¢9 -0.09
5 -0.35 +0.08 -1.28 -0.20
6 -0.11 +0.03 -0.76 -0.10
7 -0.31 +0.08 -1.27 -0.26
Note: Tension is Positive

1 MPa = 145 psi-
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Fig. 2 - Finite Element Grig
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INTERFACE SHEAR STRESS (psp)

Ov-- e
-90 0 - 90
ANGULAR LOCATION

Fig, 5 - Sheor Dlstrlbuuon on Interface for Fixed Condition
(Time Step 20)
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Fig, 6 - Pressure-Area Curve
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